<div id="kuceo"></div>
<object id="kuceo"></object>
<sup id="kuceo"></sup>
<object id="kuceo"></object><object id="kuceo"></object>
<tt id="kuceo"></tt>
<sup id="kuceo"><noscript id="kuceo"></noscript></sup><object id="kuceo"></object><sup id="kuceo"></sup>
首頁 > 技術文章 > 頻譜分析是一種將復雜信號分解為較簡單信號的技術

頻譜分析是一種將復雜信號分解為較簡單信號的技術

2019-12-03 [2251]
  頻譜分析是一種將復噪聲號分解為較簡單信號的技術。許多物理信號均可以表示為許多不同頻率簡單信號的和。找出一個信號在不同頻率下的信息(可能是幅度、功率、強度或相位等)的作法就是頻譜分析。
 
  頻譜分析可以對整個信號進行。不過有時也會將信號分割成幾段,再針對各段的信號進行頻譜分析。周期函數(shù)(例如 )適合只考慮一個周期的信號來進行頻譜分析。傅里葉分析中有許多分析非周期函數(shù)時需要的數(shù)學工具。
 
  一個函數(shù)的傅里葉變換包括了原始信號中的所有信息,只是表示的型式不同。因此可以用反傅里葉變換重組原始的信號。若要完整的重組原始信號,需要有每個頻率下的幅度及其相位,這些信息可以用二維向量、復數(shù)、或是極座標下的大小及角度來表示。在信號處理中常??紤]幅度的平方,也就是功率,所得的就是功率譜密度。
 
  實際上,大部分的儀器及軟件都用快速傅里葉變換來產(chǎn)生頻譜的信號??焖俑道锶~變換是一種針對采樣信號計算離散傅里葉變換的數(shù)學工具,可以近似傅里葉變換的結果。
 
  隨機性信號(或噪聲)的傅里葉變換也是隨機性的。需要利用一些取平均值的方式來得到其頻率分布(frequency distribution)。一般來說會將資料依一定的時間分段,將各段資料進行傅里葉變換,再將變換后的幅度或幅度平方(幅度平方較常用)平均,以得到傅里葉變換的平均值。在處理取様?shù)臅r域資料時,常用上述的作法,配合離散傅里葉變換來處理,這種處理方式稱為Welch法(Welch's method)。若所得的頻譜是平的,此信號會視為“白噪聲”,不過許多信號在時域下看似噪聲,卻可以借由這樣的處理方式得到一些頻域的信息。
永久免费AV网站,一出一进一爽又粗又大小说,西瓜视频高清在线观看免费,女人与公驹交酡全过程
桐乡市| 邢台县| 阿尔山市| 青铜峡市| 安龙县| 吉安市| 达州市| 宝应县| 钟祥市| 勃利县| 潜江市| 天水市| 尉氏县| 都安| 昌图县| 罗甸县| 宜城市| 镇雄县| 永善县| 中牟县| 米脂县| 聂拉木县| 宜兰县| 深水埗区| 阳江市| 甘泉县| 金溪县| 泰顺县| 沙河市| 从江县| 黑河市| 鄂托克前旗| 上栗县| 得荣县| 垦利县| 五华县| 西和县| 唐海县| 卓资县| 大丰市| 堆龙德庆县| http://www.2we3.com http://www.zhiad.com http://www.6882h.com http://www.qchsg.com http://www.y3088.com http://www.dc3099.com